PART 1: Historical background 1
1. History of Direct Aberration Correction 3
Harald Rose
I. Introduction 3
II. Birth of Aberration Correction 5
III. Other Early Correction Efforts 9
IV. The Darmstadt Correction Project 12
V. The Chicago and EMBL Quadrupole-Octopole Probe Correctors 18
VI. Evolution of the Hexapole Corrector 19
VII. Aberration Correction of Systems with Curved Axis 25
VIII. Revival of the Quadrupole-Octopole Corrector 29
IX. Conclusion and Outlook 34
Acknowledgments 36
References 36
PART 2: Aberration corrector design 41
2. Present and Future Hexapole Aberration Correctors
for High-Resolution Electron Microscopy 43
Maximilian Haider, Heiko Müller, and Stephan Uhlemann
I. Introduction 44
II. Present Hexapole Correctors 70
III. Hexapole Aplanats 101
IV. Conclusion 114
Acknowledgments 116
References 117
3. Advances in Aberration-Corrected Scanning Transmission
Electron Microscopy and Electron Energy-Loss
Spectroscopy 121
Ondrej L. Krivanek, Niklas Dellby, Robert J. Keyse, Matthew F. Murfitt,
Christopher S. Own, and Zoltan S. Szilagyi
I. Introduction 121
II. Aberration Correction by Non-Round Lenses 124
III. Performance of Aberration-Corrected Instruments 129
IV. New Applications 140
V. Conclusions 154
Acknowledgments 155
References 155
PART 3: Results obtained with aberration-corrected
instruments 161
4. First Results Using the Nion Third-Order Scanning
Transmission Electron Microscope Corrector 163
P. E. Batson
I. Introduction 163
II. The IBM High-Resolution STEM/EELS System 164
III. First Results 168
IV. Calculation of Probe Properties 174
V. Imaging of Crystalline Objects 176
VI. AlN/GaN/AlN Quantum Well Structure 179
VII. Hafnium Oxide Gate Stack 183
VIII. Multislice Simulations 187
IX. Atomic Movement Under the Electron Beam 190
X. Conclusions 192
Acknowledgments 193
References 193
5. Scanning Transmission Electron Microscopy and Electron
Energy Loss Spectroscopy: Mapping Materials Atom by
Atom 195
Andrew L. Bleloch
I. Introduction 195
II. Experimental Heuristics 196
III. Case Studies 199
IV. Discussion 221
References 221
6. Aberration Correction With the SACTEM-Toulouse: From
Imaging to Diffraction 225
Florent Houdellier, Martin Hÿtch, Florian Hüe, and Etienne Snoeck
I. Introduction 225
II. Aberration Correction and Strain Mapping 232
III. Aberration-Corrected Convergent-Beam Electron Holography 240
IV. Aberration-Corrected Electron Diffraction 245
V. Pseudo-Lorentz Mode for Medium-Resolution Electron Holography 252
VI. Conclusions 256
Acknowledgments 256
References 256
7. Novel Aberration Correction Concepts 261
Bernd Kabius and Harald Rose
I. Introduction 261
II. Concepts for Improving Resolution for In Situ TEM 262
III. Cc Correction 265
IV. Summary 279
Acknowledgments 280
References 280
8. Aberration-Corrected Imaging in Conventional Transmission
Electron Microscopy and Scanning Transmission Electron
Microscopy 283
Angus I. Kirkland, Peter D. Nellist, Lan-Yun Chang, and Sarah J. Haigh
I. Introduction 284
II. The Wave Aberration Function 286
III. Coherence Effects in CTEM and STEM 297
IV. Aberration-Correction Imaging Conditions 308
V. Conclusions 319
Acknowledgments 320
References 320
9. Materials Applications of Aberration-Corrected Scanning
Transmission Electron Microscopy 327
S. J. Pennycook, M. F. Chisholm, A. R. Lupini, M. Varela, K. van Benthem,
A. Y. Borisevich, M. P. Oxley, W. Luo, and S. T. Pantelides
I. Introduction 327
II. Key Instrumental Advances 328
III. Measurement and Definition of Resolution 348
IV. Complex Oxides: Manganites 355
V. High-Temperature Superconductors 361
VI. Complex Dislocation Core Structures 363
VII. Understanding Structure-Property Relations in Ceramics 367
VIII. Semiconductor Quantum Wires 371
IX. Catalysts 374
X. Future Directions 377
Acknowledgments 378
References 378
10. Spherical Aberration-Corrected Transmission Electron
Microscopy for Nanomaterials 385
Nobuo Tanaka
I. Introduction 386
II. Imaging Theories of HRTEM Using Aberration Correctors 387
III. Actual Advantages for Observation by Cs-Corrected TEM 406
IV. Actual Advantages for Observation by Cs-Corrected STEM 424
V. Three-Dimensional Observation of Atomic Objects in Cs-Corrected
STEM 430
VI. Conclusion and Future Prospects 433
Acknowledgments 434
References 434
11. Atomic-Resolution Aberration-Corrected Transmission
Electron Microscopy 439
Knut Urban, Lothar Houben, Chun-Lin Jia, Markus Lentzen, Shao-Bo Mi,
Andreas Thust, and Karsten Tillmann
I. Introduction 440
II. Fundamentals of Atomic-Resolution Imaging in a Transmission Electron
Microscope 440
III. Atomic-Resolution Electron Microscopy and the Inversion of the
Scattering and Imaging Problem 450
IV. Selected Materials Science Applications 457
V. Conclusions 477
References 478
12. Aberration-Corrected Electron Microscopes at Brookhaven
National Laboratory 481
Yimei Zhu and Joe Wall
I. Introduction 481
II. Environmental Requirements and Laboratory Design for
Aberration-Corrected Electron Microscopes 483
III. The BNL Aberration-Corrected Instruments 492
IV. A Brief Comparison of the Three Instruments 507
V. Evaluation and Applications of STEM 510
VI. Outlook 520
Acknowledgments 521
References 521
Contents of Volumes 151 and 152 525
Index 527