多源数据融合和传感器管理 罗俊海 王章静 编著
罗俊海、王章静编著的《多源数据融合和传感器管理》是关于信息融合理论、应用和传感器管理的一部教材。本书基于编者的研究工作,并借鉴国内外其他学者的成果,力图较全面、系统地讲解信息融合理论、应用、传感器管理以及发展与*新研究成果,特别是在异构、多源、动态、非理想信道、稀疏、错误容忍环境下。全书共25章,分为五个部分。**部分研究现状,包括多源数据融合概述、信息融合的原理和级别、多源传感器数据融合算法、多传感分布检测、传感器管理、探讨和备注;第二部分数学理论基础,包括Bayes方法、模糊集理论、粗糙集理论、Monte Carlo理论、Dempster-Shafer理论、估计理论和滤波器理论;第三部分多源数据融合算法,包括Bayes 决策、正态分布时的统计决策、*大*小决策、神经网络、支持向量机和Bayes网络;第四部分多源数据融合应用,包括分布式检测和融合、目标追踪的高效管理策略、数据融合的系统校准、目标跟踪策略算法与数据融合、像素与特征的图像融合;第五部分是多传感器管理。本书可作为信息工程、信息融合、模式识别、机器学习、人工智能、数据分析、军事决策和电子对抗等专业的本科生和研究生教材,也可供上述相关领域的科技人员阅读和参考,还可以供雷达、声呐、激光、红外、机器人、导航、交通、医学、物联网、泛在网、CPS、遥感、遥测、定位等领域的科技工作者参考学习。
提取码参见隐藏部分|150[/pan]
提取码: